通用桥式起重机载荷试验方案

编制:	
审核:	
批准:	

(施工单位名称)

目 录

- 1、桥式起重机概述
- 2、编制依据
- 3、试验人员安排
- 4、试验前准备
- 5、空载试验
- 6、载荷试验
- 7、动载试验

一、桥式起重机概述

桥式起重机是起重机中的一种,广泛应用在工厂、仓库、料场等等不同场所吊运货物,禁止在易燃易爆腐蚀性介质环境中使用。

本设备额定起	起重量分别,	为	吨	吨	吨,	额定跨度分
别为	米	米				
田工会出担ま	コ 舌 州					

用于室内提起重物。

- 二、编制依据
- 1、《起重机试验规范和程序》GB/5905-86
- 2、《起重机械安全规程》GB/6067-85
- 3、《起重设备安装工程施工及验收规范》GB/50278-85
- 4、《钢丝绳动动戎芦试验方法》JB/T9008.4-99
- 5、《产品使用说明书》
- 二、试验人员安排

序号	职务	人数	主要成员姓名	备注
1	桥机司机	1		
2	技术员	1		
3	检验员	1		
4	机械安装	1		
5	共计4人			

四、试验前准备

设备试验前机械安装、电气安装人员配合检验人员对设备进行检验,完成《桥式起重机自检报告》第1项至第41项,并做好记录,如果有不合格项,及时做好整改。必须要前41项合格才能进行空载试验、静载试验、动载试验、

在进行空载试验、静载试验、动载试验前,我们要进行必要的准备,准备物品如下:

序号	名称	规格	数量
1	索具	能承受吨重物	2 套
2	重物 1	吨	1 件
3	重物 2	吨	1 件
4	重物3	吨	1 件
5	重物 4	吨	1件
6	重物 5	吨	1 件
7	水平仪		1件
8	水准仪		1件
9	钳式电流表		1 块

五、空载试验

- 1、操纵机构的操作方向与起重机的各机构运转方向相符。
- 2、分别开动各机械的电动机,其运转应正常,小车运行时不应 卡轨;各制动器能准确、及时地动作,各限位开关及安全装置动作应 准确、可靠。

六、静载试验

- 1、先开动起升机构,进行空负荷升降操作,并使小车全行程上 往返运行,此项空载试运转不小于三次,应无异常现象。
- 2、将小车停在桥式类型起重机的跨中和悬臂最大有效悬壁处, 逐渐地加负荷做起升运转,直至加到额定负荷后,使小车在桥架或悬 臂全行程上往返运行数次各部分应无异常现象,卸去负荷桥架结构应

无异常现象。

- 3、将小车停在桥式类型起重机的跨中或悬臂起重机的最大有效 悬臂处,无冲击地起升额定起重量 1.25 倍负荷,在离地面高度为 100~200mm 处,悬吊停留时间不少于 10min 并无失急现象,然后卸 去负荷小车开到跨度端或支腿处,检查起重机桥加金属结构处应无裂 纹、焊缝开裂、油漆脱落及其影响安全的损坏或缺陷。
- 4、上述试验不得超过三次,第三次应无永久变形,测量主梁的 实际拱度中悬臂上的翘度。
- 5、起重机的静刚度(主梁或悬臂下____度)。将小车开至桥架跨中或悬臂最大有效处,起升额定的起重量的负荷离地面 200mm,待超重机及负荷静止后,桥门式起重机工作级别为: A3-A6 级时,主梁下挠拱度≤S/800(mm)。

七、动载试验

各机构的动负荷试运转应在全行程上进行,起重量应为额定起重量的 1.1 倍,累计起动及运行时间,对电动的起重机不应小于 10mm,各机构的动作灵敏、平稳、可靠、安全保护、联锁装置、限位开关的动作应准确、可靠。

经过严格按照上述步骤完成试验,设备可以安全使用,但是在实际操作过程中,依然需要工作人员时刻注意,避免人为误操作,在众多的事实证明,误操作是设备发生事故的主要原因。